About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TVCG
Paper
Evaluating the use of data transformation for information visualization
Abstract
Data transformation, the process of preparing raw data for effective visualization, is one of the key challenges in information visualization. Although researchers have developed many data transformation techniques, there is little empirical study of the general Impact of data transformation on visualization. Without such study, It is difficult to systematically decide when and which data transformation techniques are needed. We thus have designed and conducted a two-part empirical study that examines how the use of common data transformation techniques impacts visualization quality, which in turn affects user task performance. Our first experiment studies the impact of data transformation on user performance in single-step, typical visual analytic tasks. The second experiment assesses the impact of data transformation in multi-step analytic tasks. Our results quantify the benefits of data transformation In both experiments. More Importantly, our analyses reveal that (1) the benefits of data transformation vary significantly by task and by visualization, and (2) the use of data transformation depends on a user's interaction context. Based on our findings, we present a set of design recommendations that help guide the development and use of data transformation techniques. © 2008 IEEE.