About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Design and Test
Review
Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Codesign
Abstract
Significant growth is seen in artificial intelligence (AI), in particular deep learning (DL), which has made remarkable progress in various areas such as computer vision, natural language processing, health care, autonomous driving, and surveillance. To accomplish this, AI technologies have broadened from a centralized fashion to mobile or distributed fashion, opening a new era called edge AI, with dramatic advancements that are substantially changing everyday technology, social behavior, and lifestyles. Edge AI couples intelligence and analysis to a broad collection of connected devices and systems for data collection, caching, and processing. It enables a wide variety of new promising applications where data collection and analysis are combined. Billions of mobile users are exploiting various smartphone applications such as translation services, digital assistants, and health monitoring services.