About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICTIR 2017
Conference paper
Emotion detection from text via ensemble classification using word embeddings
Abstract
Emotion detection from text has become a popular task due to the key role of emotions in human-machine interaction. Current approaches represent text as a sparse bag-of-words vector. In this work, we propose a new approach that utilizes pre-trained, dense word embedding representations. We introduce an ensemble approach combining both sparse and dense representations. Our experiments include five datasets for emotion detection from different domains and show an average improvement of 11.6% in macro average F1-score.