Publication
Biochemistry
Paper

Electron Spin Resonance and Magnetic Relaxation Studies of Gadolinium(III) Complexes with Human Transferrin

View publication

Abstract

A human serum transferrin complex was prepared in which Gd(III) was substituted for Fe(III) at the two metal-binding sites. Characteristic changes upon metal binding in both the UV absorption of ligated tyrosines and the solvent proton longitudinal magnetic relaxation rates demonstrated 2/1 metal stoichiometry and pH-dependent binding constants. Binding studies were complicated both by binding of Gd(III) to nonspecific sites on transferrin at pH ≤7 and by complexation of the Gd(III) by the requisite bicarbonate anion at pH ≥6.0. A unique Gd(III) electron spin resonance spectrum, with a prominent signal at g = 4.96, was observed for the specific Gd(III)-transferrin complex. The major features of this spectrum were fit successfully by a model Hamiltonian which utilized crystal field parameters similar to those determined for Fe(III) in transferrin [Aasa, R. (1970) J. Chem. Phys. 52, 3919–3924]. The magnetic field dependence of the solvent proton relaxation rate was measured as a function of both pH and metal ion concentration. An observed biphasic dependence of the relaxation rate on metal concentration is attributed to either sequential metal binding to the two iron-binding sites with different relaxation properties or random binding to two sites that are similar but show conformationally induced changes in relaxation properties as the second metal is bound. The increase in the solvent proton relaxation rate with pH is consistent with a model in which a proton of a second coordination sphere water molecule is hydrogen bonded to a metal ligand which becomes deprotonated at pH 8.5. © 1986, American Chemical Society. All rights reserved.

Date

Publication

Biochemistry

Authors

Share