About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Electron paramagnetic resonance of three manganese centers in reduced SrTiO3
Abstract
Three paramagnetic centers associated with manganese substituting for Ti4+ have been observed at 300 K by EPR in reduced crystals of SrTiO3. The first is a Mn2+ ion having cubic symmetry, with isotropic g and A values given by g=2.0036±0.0005 and A=(82.6±0.1)×10-4 cm-1. The second center is characterized by an axially symmetric EPR spectrum with effective g values of ge≅2.00 and ge≅5.9 at X band. The spectrum is attributed to ΔM=±1 transitions between the Sz=±12 levels of a Mn2+ ion located in a strong tetragonal crystalline field. The tetragonal field presumably arises from a nearest-neighbor oxygen vacancy, hence we designate it as Mn2+-Vo, in analogy with the previously investigated Fe3+-Vo center. An exact computer diagonalization of the S=52 matrix, together with data on a second fine-structure transition, yielded a zero-field splitting parameter |2D′′|=1.088±0.0010 cm-1, and g values of g=2.0030±0.0005 and g=2.0082±0.0060. The hyperfine-structure splitting parameters were determined to be A=(76±1)×10-4 cm-1 and B=(65±1)×10-4 cm-1. The normally forbidden Δm=±1 transitions were also observed for this center, and their separations are consistent with an S=52 formalism. The third paramagnetic center also gives rise to a highly-anisotropic spectrum with effective g values of ge=7.945±0.001 and ge<0.4, and a hyperfine constant A=(37.3±0.1)×10-4 cm-1. The center is assigned to a Mn3+ ion associated with a nearest-neighbor oxygen vacancy, hence we designate it as Mn3+-Vo. The one fine-structure transition observed is assigned to occur between the M=±2 levels of Mn3+(3d4,S=2). By careful measurements at X- and K-band frequencies, the cubic zero-field splitting between these levels was determined to be a=0.054±0.001 cm-1. © 1977 The American Physical Society.