About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Electron correlation effects in hyperpolarizabilities of p-nitroaniline
Abstract
The importance of including electron correlation effects in the determination of the equilibrium structure and hyperpolarizabilities of p-nitroaniline is investigated. Second-order perturbation theory gives static hyperpolarizabilities which are 88% to 100% larger than those obtained without electron correlation. These values are scaled by a self-consistent field frequency-dependent contribution for comparison with experimental measurements. Despite the large increase in β(-2ω;ω,ω) from electron correlation, the theoretical result is still 3 times smaller than the experimental value obtained in solution. This difference is discussed. The finite field perturbation approach for calculating hyperpolarizabilities is discussed, and we outline a generalization of a previous method based on the solution of simultaneous equations. © 1993 American Chemical Society.