Amaury Bossion, Gavin O. Jones, et al.
Langmuir
Aliphatic polycarbonates are promising materials in the biomedical field due to their low toxicity, biocompatibility, and biodegradability. A popular approach in obtaining these materials is through the organocatalyzed ring-opening polymerization (ROP) of cyclic carbonates. Functional polycarbonates can be obtained by (co)polymerizing allyl-functional cyclic monomers, which can be chemically modified via radical thiol-ene click reactions after the ROP process. To date, allyl-bearing 6-membered cyclic carbonates have been reported, however their polymerization kinetics are slow. In previous works, larger cyclic carbonates (e.g. N-substituted eight membered cyclic carbonates) have demonstrated superior reactivities over their smaller counterparts and hence, in this work, we investigated the preparation and ROP of two allyl bearing N-substituted eight membered cyclic carbonates. One of these monomers, with a pendent carbamate group, displayed substantially enhanced polymerization kinetics that allowed for efficient homopolymerizations and co-polymerizations with commercially available monomers (e.g. trimethylene carbonate, or TMC). Lastly, the polymers underwent almost quantitative post-polymerization modification via thiol-ene chemistry to yield different functionalized polycarbonates. We also demonstrated that the post-polymerization reaction could be used to form polycarbonate-based gels with multifunctional thiols.
Amaury Bossion, Gavin O. Jones, et al.
Langmuir
Rudy J. Wojtecki, Gavin O. Jones, et al.
JACS
Rudy J. Wojtecki, Alexander Y. Yuen, et al.
Analyst
Alexander Y. Yuen, Elena Lopez-Martinez, et al.
ACS Biomater. Sci. Eng.