About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2016
Conference paper
Efficient non-linear feature adaptation using Maxout networks
Abstract
In this paper we present a simple and effective method for doing non-linear feature adaptation using Maxout networks. The technique overcomes the need to sample the partition function during training, and overcomes the need to compute the Jacobian term and its gradient for each training case. Results on the Switchboard 1 task demonstrate that the approach can improve a state-of-the-art hybrid ASR system that utilizes i-vectors.