About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH 2015
Conference paper
Efficient machine translation decoding with slow language models
Abstract
Efficient decoding has been a fundamental problem in machine translation research. Usually a significant part of the computational complexity is found in the language model cost computations. If slow language models, such as neural network or maximum-entropy models are used, the computational complexity can be so high as to render decoding impractical. In this paper we propose a method to efficiently integrate slow language models in machine translation decoding. We specifically employ neural network language models in a hierarchical phrase-based translation decoder and achieve more than 15 times speed-up versus directly integrating the neural network models. The speed-up is achieved without any noticeable drop in machine translation output quality, as measured by automatic evaluation metrics. Our proposed method is general enough to be applied to a wide variety of models and decoders.