About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE/ACM TCBB
Paper
Efficient algorithms for sequence analysis with entropic profiles
Abstract
Entropy, being closely related to repetitiveness and compressibility, is a widely used information-related measure to assess the degree of predictability of a sequence. Entropic profiles are based on information theory principles, and can be used to study the under-/over-representation of subwords, by also providing information about the scale of conserved DNA regions. Here, we focus on the algorithmic aspects related to entropic profiles. In particular, we propose linear time algorithms for their computation that rely on suffix-based data structures, more specifically on the truncated suffix tree (TST) and on the enhanced suffix array (ESA). We performed an extensive experimental campaign showing that our algorithms, beside being faster, make it possible the analysis of longer sequences, even for high degrees of resolution, than state of the art algorithms.