About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Dynamics of magnetic domains and walls
Abstract
General equations are proposed to describe the simultaneous rotations of the magnetization vectors and the displacements of curved domain walls in one pair of magnetostatically coupled magnetic films separated by a variable distance. Leakage-field energy is written in the "transmission-line" approximation. The effects of dissipation and the constraint of flux continuity across a domain wall are handled by d'Alembert's virtual work principle. The result is a set of coupled equations of the following kinds: (1) dynamic torque balance at each point inside a domain, (2) wall-domain constraint due to flux continuity, (3) boundary condition on domain magnetization which depends on instantaneous wall positions, and (4) wall velocity. Within certain limitations these equations apply to the core of an inductive magnetic recording head.