About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE/ASME TMECH
Paper
Dual-stage nanopositioning for high-speed scanning probe microscopy
Abstract
This paper presents a dual-stage approach to nanopositioning in which the tradeoff between the scanner speed and range is addressed by combining a slow, large-range scanner with a short-range scanner optimized for high-speed, high-resolution positioning. We present the design, finite-element simulations, and experimental characterization of a fast custom-built short-range scanner. The short-range scanner is based on electromagnetic actuation to provide high linearity, has a clean, high-bandwidth dynamical response and is equipped with a low-noise magnetoresistance-based sensor. By using advanced noise-resilient feedback controllers, the dual-stage system allows large-range positioning with subnanometer closed-loop resolution over a wide bandwidth. Experimental results are presented in which the dual-stage scanner system is used for imaging in a custom-built atomic force microscope. © 1996-2012 IEEE.