About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGIR 2004
Conference paper
Document clustering via adaptive subspace iteration
Abstract
Document clustering has long been an important problem in information retrieval. In this paper, we present a new clustering algorithm ASI1, which uses explicitly modeling of the subspace structure associated with each cluster. ASI simultaneously performs data reduction and subspace identification via an iterative alternating optimization procedure. Motivated from the optimization procedure, we then provide a novel method to determine the number of clusters. We also discuss the connections of ASI with various existential clustering approaches. Finally, extensive experimental results on real data sets show the effectiveness of ASI algorithm.