About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MM 2003
Conference paper
Discriminative model fusion for semantic concept detection and annotation in video
Abstract
In this paper we describe a general information fusion algorithm that can be used to incorporate multimodal cues in building user-defined semantic concept models. We compare this technique with a Bayesian Network-based approach on a semantic concept detection task. Results indicate that this technique yields superior performance. We demonstrate this approach further by building classifiers of arbitrary concepts in a score space defined by a pre-deployed set of multimodal concepts. Results show annotation for user-defined concepts both in and outside the pre-deployed set is competitive with our best video-only models on the TREC Video 2002 corpus.