Discovering workflow models from activities' lifespans
Abstract
Workflow systems utilize a process model for managing business processes. The model is typically a directed graph annotated with activity names. We view the execution of an activity as a time interval, and present two new algorithms for synthesizing process models from sets of systems' executions (audit log). A model graph generated by each of the algorithms for a process, captures all its executions and dependencies that are present in the log, and preserves existing parallelism. We compare the model graphs synthesized by our algorithms to those of Agrawal et al. [Mining process models from workflow logs, in: Proceedings of the Advances in Database Technology (EDBT'98), 6th International Conference on Extending Database Technology, Valencia, Spain, 23-27 March 1998, Lecture Notes in Computer Science, Proceedings vol. 1377, Springer, Berlin, 1998] by running them on simulated data. We observe that our graphs are more faithful in the sense that the number of excess and absent edges is consistently smaller and it depends on the size and quality of the log. In other words, we show that our time interval approach permits reconstruction of more accurate workflow model graphs from a log. © 2003 Elsevier B.V. All rights reserved.