About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Networks
Paper
Discounted average degree density metric and new algorithms for the densest subgraph problem
Abstract
Detecting the densest subgraph is one of the most important problems in graph mining and has a variety of applications. Although there are many possible metrics for subgraph density, there is no consensus on which density metric we should use. In this article, we suggest a new density metric, the discounted average degree, which has some desirable properties of the subgraph's density. We also show how to obtain an optimum densest subgraph for small graphs with respect to several density metrics, including our new density metric, by using mixed integer programming. Finally, we develop a new heuristic algorithm to quickly obtain a good approximate solution for large graphs. Our computational experiments on real-world graphs showed that our new heuristic algorithm outperformed other heuristics in terms of the quality of the solutions. © 2017 Wiley Periodicals, Inc. NETWORKS, Vol. 71(1), 3–15 2018.