About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Computer Society SP 1991
Conference paper
Directed-graph epidemiological models of computer viruses
Abstract
The strong analogy between biological viruses and their computational counterparts has motivated the authors to adapt the techniques of mathematical epidemiology to the study of computer virus propagation. In order to allow for the most general patterns of program sharing, a standard epidemiological model is extended by placing it on a directed graph and a combination of analysis and simulation is used to study its behavior. The conditions under which epidemics are likely to occur are determined, and, in cases where they do, the dynamics of the expected number of infected individuals are examined as a function of time. It is concluded that an imperfect defense against computer viruses can still be highly effective in preventing their widespread proliferation, provided that the infection rate does not exceed a well-defined critical epidemic threshold.