About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Dipole - Dipole interactions in nanoparticle superlattices
Abstract
Nanoparticles often self-assemble into hexagonal-close-packed (hcp) structures although it is predicted to be less stable than face-centered-cubic (fcc) packing in hard-sphere models. In addition to close-packed fcc and hcp superlattices, we observe formation of nonclose-packed simple-hexagonal (sh) superlattices of nearly spherical PbS, PbSe, and γ-Fe2O 3 nanocrystals. This surprisingly rich phase diagram of monodisperse semiconducting nanoparticles is explained by considering the interactions between nonlocal dipoles of individual nanoparticles. By calculating the total electrostatic and dispersive energies, we explain stability of the hcp and sh nanoparticle superlattices, introduce the superlattice phase diagram, and predict antiferroelectric ordering in dipolar nanoparticle superlattices. © 2007 American Chemical Society.