About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PRX Quantum
Paper
Digital Quantum Simulation of Open Quantum Systems Using Quantum Imaginary-Time Evolution
Abstract
Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground-state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their nonunitary dynamics are also not natural to simulate on digital quantum devices. Here, we report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using adaptations of the quantum imaginary-time evolution algorithm. We demonstrate the algorithms on IBM Quantum's hardware with simulations of the spontaneous emission of a two-level system and the dissipative transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum systems on quantum hardware.