Conference paper

Developing speech recognition systems for corpus indexing under the IARPA Babel program

View publication


Automatic speech recognition is a core component of many applications, including keyword search. In this paper we describe experiments on acoustic modeling, language modeling, and decoding for keyword search on a Cantonese conversational telephony corpus collected as part of the IARPA Babel program. We show that acoustic modeling techniques such as the bootstrapped-and- restructured model and deep neural network acoustic model significantly outperform a state-of-the-art baseline GMM/HMM model, in terms of both recognition performance and keyword search performance, with improvements of up to 11% relative character error rate reduction and 31% relative maximum term weighted value improvement. We show that while an interpolated Model M and neural network LM improve recognition performance, they do not improve keyword search results; however, the advanced LM does reduce the size of the keyword search index. Finally, we show that a simple form of automatically adapted keyword search performs 16% better than a preindexed search system, indicating that out-of-vocabulary search is still a challenge. © 2013 IEEE.