About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
STACS 2008
Conference paper
Deterministically isolating a perfect matching in bipartite planar graphs
Abstract
We present a deterministic way of assigning small (log bit) weights to the edges of a bipartite planar graph so that the minimum weight perfect matching becomes unique. The isolation lemma as described in [MVV87] achieves the same for general graphs using a randomized weighting scheme, whereas we can do it deterministically when restricted to bipartite planar graphs. As a consequence, we reduce both decision and construction versions of the matching problem to testing whether a matrix is singular, under the promise that its determinant is 0 or 1, thus obtaining a highly parallel SPL algorithm for bipartite planar graphs. This improves the earlier known bounds of non-uniform SPL by [ARZ99] and NC2 by [MN95, MV00]. It also rekindles the hope of obtaining a deterministic parallel algorithm for constructing a perfect matching in non-bipartite planar graphs, which has been open for a long time. Our techniques are elementary and simple.