About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Design of improved integrated thin-film planar dc SQUID gradiometers
Abstract
Key issues in the design of improved first and second derivative, thin-film, planar dc SQUID gradiometers are discussed. The introduction of a planar coupling scheme to optimally couple the planar dc SQUID to the gradiometer pickup loops leads to significantly increased sensitivity as well as elimination of the sensitivity differences between series and parallel gradiometer loop configurations. Two-hole and figure-8 SQUID designs are presented which are consistent with intrinsic gradiometer balance ≲10 -4 against uniform field changes. Straightforward calculations together with data from existing low-noise SQUIDs suggest improvements in gradient sensitivity on the order of 102 over existing planar gradiometers.