About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Japanese Journal of Applied Physics
Paper
Current-driven domain wall motion due to volume spin transfer torque in Co/Ni multilayer systems on Au underlayer
Abstract
We have studied the current-induced domain wall (CIDW) dynamics in perpendicularly magnetized Co/Ni multilayers deposited on Au underlayer, where the conventional spin transfer torque governs the domain wall dynamics, by the Kerr microscope. It is found that the DW angle tilting following Oersted field profile plays an important role in domain wall (DW) motion at high current density J by decreasing DW velocity with the increasing J, while distorting its DW morphology. Also we find that the DW pinning becomes pronounced as the anisotropy decreases by increasing number of Co/Ni repeats. Most remarkably, the DW tilting angle changes its sign by inserting ultrathin Pt layer between Au and Co layer, which suggests that the Dzyaloshinskii-Moriya interaction and spin Hall effect induces opposite effect in DW tilting. Our findings can be of use for application of CIDW to spintronics with perpendicularly magnetized systems.