About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry
Paper
Crystal orbital hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations
Abstract
After giving a concise overview of the current knowledge in the field of quantum mechanical bonding indicators for molecules and solids, we show how to obtain energy-resolved visualization of chemical bonding in solids by means of density-functional electronic structure calculations. On the basis of a band structure energy partitioning scheme, i.e., rewriting the band structure energy as a sum of orbital pair contributions, we derive what is to be defined as crystal orbital Hamilton populations (COHP). In particular, a COHP(ε) diagram indicates bonding, nonbonding, and antibonding energy regions within a specified energy range while an energy integral of a COHP gives access to the contribution of an atom or a chemical bond to the distribution of one-particle energies. A further decomposition into specific atomic orbitals or symmetry-adapted linear combinations of atomic orbitals (hybrids) can easily be performed by using a projector technique involving unitary transformations. Because of its structural simplicity and the availability of reliable thermodynamic data, we investigate the bonding within crystalline silicon (diamond phase) first. As a basis set, both body-centered-cubic screened and diamond screened atomic-centered tight-binding linear muffin-tin orbitals (TB-LMTOs) are used throughout. The shape of COHP versus energy diagrams and the significance of COHP subcontributions (s-s, sp3-sp3) are analyzed. Specifically, the difference between the COHP energy integral (one-particle bond energy) and the experimental bond energy is critically examined. While absolute values for the one-particle bond energy show a high basis set dependence due to changing on-site (crystal field) COHP terms, the shape of off-site (bonding) COHP functions, elucidating the local bonding principle within an extended structure, remains nearly unaffected. © 1993 American Chemical Society.