About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2016
Conference paper
Coverage embedding models for neural machine translation
Abstract
In this paper, we enhance the attention-based neural machine translation (NMT) by adding explicit coverage embedding models to alleviate issues of repeating and dropping translations in NMT. For each source word, our model starts with a full coverage embedding vector to track the coverage status, and then keeps updating it with neural networks as the translation goes. Experiments on the large-scale Chinese-to-English task show that our enhanced model improves the translation quality significantly on various test sets over the strong large vocabulary NMT system.