Correlation queries for mass spectrometry imaging
Abstract
Mass spectrometry imaging (MSI) generates large volumetric data sets consisting of mass to charge ratio (m/z), ion current, and x,y coordinate location. These data sets usually serve limited purposes centered on measuring the distribution of a small set of ions with known m/z. Such earmarked queries consider only a fraction of the full mass spectrum captured, and there are few tools to assist the exploration of the remaining volume of unknown data in terms of demonstrating similarity or discordance in tissue compartment distribution patterns. Here we present a novel, interactive approach to extract information from MSI data that relies on precalculated data structures to perform queries of large data sets with a typical laptop. We have devised methods to query the full volume to find new m/z values of potential interest based on similarity to biological structures or to the spatial distribution of known ions. We describe these query methods in detail and provide examples demonstrating the power of the methods to "discover" m/z values of ions that have such potentially interesting correlations. The "discovered" ions may be further correlated with either positional locations or the coincident distribution of other ions using successive queries. Finally, we show it is possible to gain insight to the fragmentation pattern of the parent molecule from such correlations. The ability to discover new ions of interest in the unknown bulk of an MSI data set offers the potential to further our understanding of biological and physiological processes related to health and disease. © 2013 American Chemical Society.