About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EDBT 2017
Conference paper
Correlation-Aware distance measures for data series
Abstract
The field of data series processing has attracted lots of attention thanks to the increased availability of unprecedented amounts of sequential data. These data are then processed and analyzed using a large variety of techniques, most of which are based on the computation of some distance function. In this study, we evaluate the benefits of incorporating into the distance functions correlation measures, which enable us to capture the associations among neighboring values in the sequence. We propose three such measures, inspired by statistical and probabilistic approaches. We analytically and experimentally demonstrate the benefits of the new measures using the 1NN classification task, and discuss the lessons learned.