Publication
Physical Review B - CMMP
Paper

Cooling of photoexcited carriers in graphene by internal and substrate phonons

Download paper

Abstract

We investigate the energy relaxation of hot carriers produced by photoexcitation of graphene through coupling to both intrinsic and remote (substrate) surface polar phonons using the Boltzmann equation approach. We find that the energy relaxation of hot photocarriers in graphene on commonly used polar substrates, under most conditions, is dominated by remote surface polar phonons. We also calculate key characteristics of the energy relaxation process, such as the transient cooling time and steady-state carrier temperatures and photocarrier densities, which determine the thermoelectric and photovoltaic photoresponse, respectively. Substrate engineering can be a promising route to efficient optoelectronic devices driven by hot carrier dynamics. © 2012 American Physical Society.

Date

09 Jul 2012

Publication

Physical Review B - CMMP

Resources

Share