Publication
New Journal of Physics
Paper

Controlling molecular broadband-emission by optical confinement

View publication

Abstract

We investigate experimentally and theoretically the fluorescence emitted by molecular ensembles as well as spatially isolated, single molecules of an organic dye immobilized in a quasi-planar optical microresonator at room temperature. The optically excited dipole emitters couple simultaneously to on-and off-axis cavity resonances of the microresonator. The multi-spectral radiative contributions are strongly modified with respect to free (non-confined) space due to enhancement and inhibition of the molecular spontaneous emission (SpE) rate. By varying the mirror spacing of the microresonator on the nanometer-scale, the SpE rate of the cavity-confined molecules and, consequently, the spectral line width of the microresonator- controlled broadband fluorescence can be tuned by up to one order of magnitude. Stepwise reducing the optical confinement, we observe that the microresonator-controlled molecular fluorescence line shape converges towards the measured fluorescence line shape in free space. Our results are important for research on and application of broadband emitters in nano-optics and -photonics as well as microcavity-enhanced (single molecule) spectroscopy. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.