About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Semiconductor nanowires formed using the vapor-liquid-solid mechanism are routinely grown in many laboratories, but a comprehensive understanding of the key factors affecting wire growth is still lacking. In this paper we show that, under conditions of low disilane pressure and higher temperature, long, untapered Si wires cannot be grown, using Au catalyst, without the presence of oxygen. Exposure to oxygen, even at low levels, reduces the diffusion of Au away from the catalyst droplets. This allows the droplet volumes to remain constant for longer times and therefore permits the growth of untapered wires. This effect is observed for both gas-phase and surface-bound oxygen, so the source of oxygen is unimportant. The control of oxygen exposure during growth provides a new tool for the fabrication of long, uniform-diameter structures, as required for many applications of nanowires. © 2006 American Chemical Society.