About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AISTATS 2017
Conference paper
Co-occurring directions sketching for approximate matrix multiply
Abstract
We introduce co-occurring directions sketching, a deterministic algorithm for approximate matrix product (AMM), in the streaming model. We show that co-occurring directions achieves a better error bound for AMM than other randomized and deterministic approaches for AMM. Co-occurring directions gives a (1 + ε)-approximation of the optimal low rank approximation of a matrix product. Empirically our algorithm outperforms competing methods for AMM, for a small sketch size. We validate empirically our theoretical findings and algorithms.