Publication
Letters in Applied Microbiology
Paper

Clinically applicable irreversible electroporation for eradication of micro-organisms

View publication

Abstract

Irreversible electroporation (IRE) damages cell membranes and is used in medicine for nonthermal ablation of malignant tumours. Our aim was to evaluate the antimicrobial effect of IRE. The pathogenic micro-organisms, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans were subjected to IRE. Survival was measured as a function of voltage and the number of pulses applied. Combined use of IRE and oxacillin for eradication of Staph. aureus was also tested. Log10 reduction in micro-organisms positively correlated with the number of applied pulses. The colony count of Strep. pyogenes and E. coli declined by 3·38 and 3·05 orders of magnitude, respectively, using an electric field of 2000 V and 100 pulses. Killing of Staph. aureus and P. aeruginosa was achieved with a double cycle of IRE (2000, 1500 V and repeated 1250 V respectively) of 50–100 IRE pulses. The addition of subclinical inhibitory concentrations of oxacillin to the Staph. aureus suspension prior to IRE led to total bacterial death, demonstrating synergism between oxacillin and IRE. Our results demonstrate that using IRE with clinically established parameters has a marked in vitro effect on pathogenic micro-organisms and highlights the potential of IRE as a treatment modality for deep-seated infections, particularly when combined with low doses of antibiotics. Significance and Impact of the Study: Irreversible electroporation (IRE) is utilized in interventional radiology to treat cancer patients. In this study we evaluated in vitro the antimicrobial effect of IRE. We demonstrated that using IRE with clinically established parameters has a marked effect on pathogenic micro-organisms and is synergistic to antimicrobials when both are combined. Our results point to the potential of IRE as a treatment modality for deep-seated infections.

Date

24 May 2018

Publication

Letters in Applied Microbiology

Authors

Share