About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Chemical order in amorphous silicon carbide
Abstract
While ordering in alloy crystals is well understood, short-range ordering in amorphous alloys remains controversial. Here, by studying computer-generated models of amorphous SiC, we show that there are two principal factors controlling the degree of chemical order in amorphous covalent alloys. One, the chemical preference for mixed bonds, is much the same in crystalline and amorphous materials. However, the other factor, the atomic size difference, is far less effective at driving ordering in amorphous material than in the crystal. As a result, the amorphous phase may show either strong ordering (as in GaAs), or weaker ordering (as in SiC), depending upon the relative importance of these two factors. © 1994 The American Physical Society.