Publication
Applied Physics Letters
Paper

Carbon nanotube scanning probe for profiling of deep-ultraviolet and 193 nm photoresist patterns

View publication

Abstract

The continual scaling down of complementary metal-oxide semiconductor feature size to 100 nm and below necessitates a characterization technique to resolve high-aspect-ratio features in the nanoscale regime. We report the use of atomic force microscopy coupled with high-aspect-ratio multiwalled carbon nanotube (MWCNT) scanning probe tip for the purpose of imaging surface profile of photoresists. MWCNT tips of 5-10 nm in diameter and about a micron long are used. Their exceptional mechanical strength and ability to buckle reversibly enable resolution of steep, deep nanoscale features. Images of photoresist patterns generated by 257 nm interference lithography as well as 193 nm lithography are presented to demonstrate MWCNT scanning probe tips for applications in metrology. © 2002 American Institute of Physics.