About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AMIA Annual Symposium
Paper
Bootstrap-based Feature Selection to Balance Model Discrimination and Predictor Significance: A Study of Stroke Prediction in Atrial Fibrillation
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmias, which increases the risk and severity of ischemic stroke. For predicting ischemic stroke in AF patients, a risk prediction model that can achieve both good model discrimination (e.g., A UC) and statistical significance ofpredictors is required in real clinical practices. In this paper, we propose a new bootstrap-based wrapper (Boots-wrapper) method of feature selection, and apply this method on Chinese Atrial Fibrillation Registry data to develop 1-year stroke prediction models in AF. The proposed method can heuristically search a subset of features to maximize the discrimination of the prediction model and minimize the penalty for the non-significant features. To achieve robust feature selection, we perform bootstrap sampling to get a more reliable estimate of the variation and significance statistics. The experimental results show that Boots-wrapper can balance model discrimination and statistical significance offeatures for developing AF stroke prediction models.