Publication
EDBT/ICDT-WS 2015
Conference paper

Big graph privacy

Abstract

Massive graphs have become pervasive in a wide variety of data domains. However, they are generally more difficult to anonymize because the structural information buried in graph can be leveraged by an attacker to breach sensitive attributes. Furthermore, the increasing sizes of graph data sets present a major challenge to anonynization algorithms. In this paper, we will address the problem of privacy-preserving data mining of massive graph-data sets. We design a MapReduce framework to address the problem of attribute disclosure in massive graphs. We leverage the MapReduce framework to create a scalable algorithm that can be used for very large graphs. Unlike existing literature in graph privacy, our proposed algorithm focuses on the sensitive content at the nodes rather than on the structure. This is because content-centric perturbation at the nodes is a more effective way to prevent attribute disclosure rather than structural reorganization. One advantage of the approach is that structural queries can be accurately answered on the anonymized graph. We present experimental results illustrating the effectiveness of our method.

Date

Publication

EDBT/ICDT-WS 2015

Authors

Share