About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Given partially ordered sets (posets) P and Q, it is often useful to construct maps g:P→Q which are chain-continuous: least upper bounds (supremums) of nonempty linearly ordered subsets are preserved. Chaincontinuity is analogous to topological continuity and is generally much more difficult to verify than isotonicity: the preservation of the order relation. This paper introduces the concept of an extension basis: a subset B of P such that any isotone f:B→Q has a unique chain-continuous extension g:P→Q. Two characterizations of the chain-complete posets which have extension bases are obtained. These results are then applied to the problem of constructing an extension basis for the poset [P→Q] of chain-continuous maps from P to Q, given extension bases for P and Q. This is not always possible, but it becomes possible when a mild (and independently motivated) restriction is imposed on either P or Q. A lattice structure is not needed. Finally, we consider extension bases which can be recursively listed and derive a recently established theorem as a corollary.