About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2007
Conference paper
Automatic call section segmentation for contact-center calls
Abstract
This paper presents a SVM (Support Vector Machine) classification system which divides contact-center call transcripts into "Greeting", "Question", "Refine", "Research", "Resolution", "Closing" and "Out-of-topic" sections. This call section segmentation is useful to improve search and retrieval functions and to provide more detailed statistics on calls. We use an off-the-shelf automatic speech recognition (ASR) system to generate call transcripts from recorded calls between customers and service representatives. We first classify an individual utterance into a call section by applying the SVM classifier and then merge adjacent utterances classified into a same call section. We experiment with the proposed system on 100 automatically transcribed calls. The 10-fold cross validation shows 87.2% classification accuracy. we also compare the proposed algorithm with two other approaches - the most frequent section only method and a maximum entropy-based segmentation. The evaluation shows that our system's accuracy is 12% higher than the first baseline system and 6% higher than the second baseline system respectively. Copyright 2007 ACM.