About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2010
Conference paper
Arabic mention detection: Toward better unit of analysis
Abstract
We investigate in this paper the adequate unit of analysis for Arabic Mention Detection. We experiment different segmentation schemes with various feature-sets. Results show that when limited resources are available, models built on morphologically segmented data outperform other models by up to 4F points. On the other hand, when more resources extracted from morphologically segmented data become available, models built with Arabic TreeBank style segmentation yield to better results. We also show additional improvement by combining different segmentation schemes. © 2010 Association for Computational Linguistics.