About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICCAD 2022
Conference paper
Approximate computing and the efficient machine learning expedition
Abstract
Approximate computing (AxC) has been long accepted as a design alternative for efficient system implementation at the cost of relaxed accuracy requirements. Despite the AxC research activities in various application domains, AxC thrived the past decade when it was applied in Machine Learning (ML). The by definition approximate notion of ML models but also the increased computational overheads associated with ML applications-that were effectively mitigated by corresponding approximations-led to a perfect matching and a fruitful synergy. AxC for AI/ML has transcended beyond academic prototypes. In this work, we enlighten the synergistic nature of AxC and ML and elucidate the impact of AxC in designing efficient ML systems. To that end, we present an overview and taxonomy of AxC for ML and use two descriptive application scenarios to demonstrate how AxC boosts the efficiency of ML systems.