About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
HICSS 2022
Conference paper
Analyzing Complaints and Customer Satisfaction in the Travel Industry
Abstract
Customer satisfaction is crucial for the long term success of any travel service provider. Therefore, identifying situations that can lead to customer dissatisfaction is critical. The strongest evidence of customers dissatisfaction are their complaints. While complaints do not occur very often, they almost always lead to loss of customer goodwill which can cost travel providers millions of dollars in future revenues. In this paper, we describe an approach to proactively identify customers that have the highest propensity to complain as they encounter a travel disruption event. These are invaluable insights that can empower customer service teams with information to deliver a more timely, relevant and impactful service experience. We use three key aspects in this approach: (i) specialized feature engineering for the travel industry; (ii) handling extremely imbalanced data and (iii) adaptation of binary classification, anomaly detection and learning to rank models to our specific task. This research is an important step towards more individualized understanding of customer behavior, and potential service enhancements to further increase customer satisfaction.