About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMOD 2020
Conference paper
An Ontology-Based Conversation System for Knowledge Bases
Abstract
Domain-specific knowledge bases (KB), carefully curated from various data sources, provide an invaluable reference for professionals. Conversation systems make these KBs easily accessible to professionals and are gaining popularity due to recent advances in natural language understanding and AI. Despite the increasing use of various conversation systems in open-domain applications, the requirements of a domain-specific conversation system are quite different and challenging. In this paper, we propose an ontology-based conversation system for domain-specific KBs. In particular, we exploit the domain knowledge inherent in the domain ontology to identify user intents, and the corresponding entities to bootstrap the conversation space. We incorporate the feedback from domain experts to further refine these patterns, and use them to generate training samples for the conversation model, lifting the heavy burden from the conversation designers. We have incorporated our innovations into a conversation agent focused on healthcare as a feature of the IBM Micromedex product.