About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JXCDC
Paper
An Energy-Efficient Digital ReRAM-Crossbar-Based CNN With Bitwise Parallelism
Abstract
There is great attention to develop hardware accelerator with better energy efficiency, as well as throughput, than GPUs for convolutional neural network (CNN). The existing solutions have relatively limited parallelism as well as large power consumption (including leakage power). In this paper, we present a resistive random access memory (ReRAM)-accelerated CNN that can achieve significantly higher throughput and energy efficiency when the CNN is trained with binary constraints on both weights and activations, and is further mapped on a digital ReRAM-crossbar. We propose an optimized accelerator architecture tailored for bitwise convolution that features massive parallelism with high energy efficiency. Numerical experiment results show that the binary CNN accelerator on a digital ReRAM-crossbar achieves a peak throughput of 792 GOPS at the power consumption of 4.5 mW, which is 1.61 times faster and 296 times more energy-efficient than a high-end GPU.