About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PESGM 2014
Conference paper
An efficient approach for solving large stochastic unit commitment problems arising in a California ISO planning model
Abstract
We describe our experience in obtaining significant computational improvements in the solution of large stochastic unit commitment problems. The model we use is a stochastic version of a planning model used by the California Independent System Operator, covering the entire WECC western regional grid. We solve daily hour-timestep stochastic unit commitment problems using a new progressive hedging approach that features linear subproblems and guided solves for finding feasible solutions. For stochastic problems with 5 scenarios, the algorithm produces near-optimal solutions with a 6 times improvement in serial solution time, and over 20 times improvement when run in parallel; for previously unsolvable stochastic problems, we obtain near-optimal solutions within a couple of hours. We note that although this algorithm is demonstrated for stochastic unit commitment problems, the algorithm itself is suitable for application to generic stochastic optimization problems.