About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IC2E 2014
Conference paper
An adaptive utilization accelerator for virtualized environments
Abstract
One of the key enablers of a cloud provider competitiveness is ability to over-commit shared infrastructure at ratios that are higher than those of other competitors, without compromising non-functional requirements, such as performance. A widely recognized impediment to achieving this goal is so called "Virtual Machines sprawl", a phenomenon referring to the situation when customers order Virtual Machines (VM) on the cloud, use them extensively and then leave them inactive for prolonged periods of time. Since a typical cloud provisioning system treats new VM provision requests according to the nominal virtual hardware specification, an often occurring situation is that the nominal resources of a cloud/pool become exhausted fast while the physical hosts utilization remains low.We present a novel cloud resources scheduler called Pulsar that extends OpenStack Nova Filter Scheduler. The key design principle of Pulsar is adaptivity. It recognises that effective safely attainable over-commit ratio varies with time due to workloads' variability and dynamically adapts the effective over-commit ratio to these changes. We evaluate Pulsar via extensive simulations and demonstrate its performance on the actual OpenStack based testbed running popular workloads.