About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Amorphization and conductivity of silicon and germanium induced by indentation
Abstract
We report the observation, by transmission electron microscopy, that single-crystal silicon and germanium are converted to an amorphous state at room temperature directly under both Vickers and Knoop indentations. The effect is seen for crystal orientations of [001], [011], and [111], and with applied loads between 0.1 and 0.5 N. We also observe that the materials become electrically conducting under load and that the process is reversible on subsequent unloading and reloading. Furthermore, the transformed phase is found to make Ohmic contact to the surrounding, untransformed, semiconductor. © 1988 The American Physical Society.