Investigations of silicon nano-crystal floating gate memories
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
The critical current density of a granular superconductor, modeled as an array of Josephson-coupled grains, is calculated using a Ginzburg-Landau approach that accounts for suppression of the superconducting gap parameter in the grains by supercurrent. For a wide range of experimental parameters, the critical current density versus temperature is found to have an Ambegaokar-Baratoff dependence at low temperatures but to exhibit a crossover to a Ginzburg-Landau (1-T/Tc)3/2 dependence near Tc, the crossover occurring at the temperature for which the Josephson coupling energy of a junction is approximately equal to the superconducting condensation energy of a grain. Experimental results displaying this behavior are reported for a NbN film. © 1987 The American Physical Society.
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
Mitsuru Ueda, Hideharu Mori, et al.
Journal of Polymer Science Part A: Polymer Chemistry
J. Tersoff
Applied Surface Science