About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2020
Conference paper
ALEX: Active Learning based Enhancement of a Classification Model's EXplainability
Abstract
An active learning (AL) algorithm seeks to construct an effective classifier with a minimal number of labeled examples in a bootstrapping manner. While standard AL heuristics, such as selecting those points for annotation for which a classification model yields least confident predictions, there has been no empirical investigation to see if these heuristics lead to models that are more interpretable to humans. In the era of data-driven learning, this is an important research direction to pursue. This paper describes our work-in-progress towards developing an AL selection function that in addition to model effectiveness also seeks to improve on the interpretability of a model during the bootstrapping steps. Concretely speaking, our proposed selection function trains an 'explainer' model in addition to the classifier model, and favours those instances where a different part of the data is used, on an average, to explain the predicted class. Initial experiments exhibited encouraging trends in showing that such a heuristic can lead to developing more effective and more explainable end-to-end data-driven classifiers.