About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIDM 2014
Conference paper
Alarm prediction in industrial machines using autoregressive LS-SVM models
Abstract
In industrial machines different alarms are embedded in machines controllers. They make use of sensors and machine states to indicate to end-users various information (e.g. diagnostics or need of maintenance) or to put machines in a specific mode (e.g. shut-down when thermal protection is activated). More specifically, the alarms are often triggered based on comparing sensors data to a threshold defined in the controllers software. In batch production machines, triggering an alarm (e.g. thermal protection) in the middle of a batch production is crucial for the quality of the produced batch and results into a high production loss. This situation can be avoided if the settings of the production machine (e.g. production speed) is adjusted accordingly based on the temperature monitoring. Therefore, predicting a temperature alarm and adjusting the production speed to avoid triggering the alarm seems logical. In this paper we show the effectiveness of Least Squares Support Vector Machines (LS-SVMs) in predicting the evolution of the temperature in a steel production machine and, as a consequence, possible alarms due to overheating. Firstly, in an offline fashion, we develop a nonlinear autoregressive (NAR) model, where a systematic model selection procedure allows to carefully tune the model parameters. Afterwards, the NAR model is used online to forecast the future temperature trend. Finally, a classifier which uses as input the outcomes of the NAR model allows to foresee future alarms.