About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DAC 2021
Conference paper
AID: Attesting the Integrity of Deep Neural Networks
Abstract
Due to their crucial role in many decision-making tasks, Deep Neural Networks (DNNs) are common targets for a large array of integrity breaches. In this paper, we propose AID, a novel methodology to validate the integrity of DNNs. AID generates a set of test cases called edge-points that can reveal if a model has been compromised with access to the top-1 prediction output. Experimental results show that AID is highly effective and reliable. With at most four edge-points, AID is able to detect eight representative integrity breaches including backdoor, poisoning, and compression attacks, with zero false-positive.